Overview
Simply by initializing Laminar at the start of your application, you can start tracing prompts, responses, token usage, and costs of LLM calls from:- LLM providers SDKs (OpenAI, Anthropic, Gemini, etc.)
- LLM Frameworks (LangChain, LangGraph, Vercel AI SDK, Browser Use, etc.)
- Vector database operations (Pinecone, Qdrant, etc.)
- JavaScript/TypeScript
- Python
In JavaScript/TypeScript, recommended approach is to specify which modules to instrument using the
instrumentModules parameter.Instrument all supported libraries
This approach instruments all supported libraries automatically.- JavaScript/TypeScript
- Python
Instrument specific libraries
For better control and compatibility, instrument only the libraries you need.- JavaScript/TypeScript
- Python
Recommended approach for JavaScript/TypeScript applications:
Disable Automatic Instrumentation
- JavaScript/TypeScript
- Python
Supported Libraries
Laminar supports automatic instrumentation for a wide range of libraries:- JavaScript/TypeScript
- Python
LLM Providers:
- OpenAI (
openai) - Anthropic (
@anthropic-ai/sdk) - Google AI (
@google/generative-ai) - Cohere (
cohere-ai)
- Vercel AI SDK (
ai) - LangChain (
langchain,@langchain/core)
- Pinecone (
@pinecone-database/pinecone) - Qdrant (
@qdrant/js-client-rest)
Integration-Specific Guides
Some frameworks require additional configuration:- Next.js applications: See the Next.js integration guide
- Vercel AI SDK: See the Vercel AI SDK guide
- LangChain: See the LangChain integration guide
What Gets Traced
When automatic instrumentation is enabled, you’ll see detailed traces including:LLM Calls
- Request parameters (model, messages, temperature, etc.)
- Response content and metadata
- Token usage (input, output, total)
- Latency and performance metrics
- Automatic cost calculation
Framework Operations
- Chain executions in LangChain
- Agent reasoning steps
- Tool calls and results
- Vector similarity searches
Error Handling
- Exception details and stack traces
- Retry attempts and failures
- Rate limiting and quota errors
Next Steps
Once automatic instrumentation is working:- Add structure with the
observedecorator to group related operations - Organize traces into sessions for multi-turn conversations
- Add metadata for better filtering and analysis
- Set up evaluations to monitor quality and performance
